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embraces the theorems of existence, characterization, uniqueness, and strong
uniqueness. � 1999 Academic Press

1. INTRODUCTION

The problems of best uniform restricted ranges approximation have been
thoroughly studied in the framework of the well-established theory of best
constrained approximation of real-valued functions (see the corresponding
review in [1] and the relevant references therein; a modern approach to
the problem is presented in [2]).

In this article we consider the problem of best uniform restricted ranges
approximation of complex-valued continuous functions, which in analogy
with the real-valued case [3, 4] can be formulated as follows. Let C(Q) be
the space of continuous complex-valued functions defined on a compact set Q,
let P/C(Q) be a finite-dimensional subspace in it, and let 0=[0t | t # Q]
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be a system of non-empty convex and closed sets in C. For a given function
f # C(Q) set

E( f ) := inf
p # P0

& f& p&, (1.1)

where

P0 :=[ p # P | p(t) # 0t for all t # Q].

Here & & stands for the uniform norm.
The problem is to investigate the properties of the elements p* # P0 providing

the infimum in (1.1). Admittedly, this problem for a general class of restriction
is quite difficult.

In this work the problems of existence, characterization, uniqueness and
strong uniqueness of such an element p* are studied for some special
system of restrictions 0, using the notion of a minimal admissible pair of
sets corresponding to the notion of a characterization set of best approxima-
tion (see, for instance, [5]) in the classical theory of uniform approximation.

The organization of this paper is as follows. In Section 2 we introduce
the basic definitions, notations, and facts to be employed throughout the
article. We also present the theorem on existence of best restricted ranges
approximation. The definition and properties of a minimal admissible pair
of sets constitute the subject of Section 3. We present the three criteria of
best approximation (including the Kolmogorov-type characterization and
zero in the convex hull characterization) in Section 4. In Section 5 the
theorems of uniqueness and strong uniqueness of best approximation and
the theorem on continuity of the operator of best approximation are
proved. In Section 6 we make concluding remarks.

2. BASIC DEFINITIONS, NOTATIONS AND FACTS

Let Q be a compact set in the complex plane C containing at least n+1
points. Denote by C(Q) the Banach algebra of all complex-valued con-
tinuous functions defined on Q with the norm

& f &=max
t # Q

| f (t)|.

For every function f # C(Q) introduce the set M( f )

M( f ) :=[t # Q | | f (t)|=& f &].
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Clearly, M( f ) is compact. Consider an n-dimensional subspace P/C(Q)
with a basis [.1 , .2 , ..., .n]. The elements p # P have the form

p= :
n

&=1

c&.& ,

where c& # C, &=1, ..., n. We call them generalized polynomials with respect
to the system [.1 , .2 , ..., .n], or just polynomials, for short. For p # P set

Z( p) :=[t # Q | p(t)=0].

Definition 2.1 [6]. An n-dimensional subspace P/C(Q) is called a
Haar space if every polynomial p # P"[0] has no more than n&1 zeros
in Q.

Let u # C(Q) and r # C(Q) be fixed functions, in addition assume that
r(t)>0 for all t # Q. For every point t # Q denote

0t :=[z # C | |z&u(t)|�r(t)],

int 0t :=[z # C | |z&u(t)|<r(t)],

�0t :=[z # C | |z&u(t)|=r(t)].

Hypothesis 2.1. Throughout this paper we assume that always for some
p0 # P the condition

p0(t) # int 0t

holds for all t # Q.

For all p # P set

B( p) :=[t # Q | p(t) # �0t].

In view of continuity of the functions u, r and p the set B( p) is compact.
Introduce the notation

PB, 0 :=[ p # P | p(t) # 0t for all t # B],

where B/Q, P<, 0 :=P, PQ, 0=P0 . Note that for every set B/Q the set
PB, 0 is convex, while for a closed set B the set PB, 0 is closed in P. The
inclusion B$/B obviously implies PB, 0 /PB$, 0 .
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Let M be the set of ordered pairs (A; B), where A/Q, B/Q and
A{<. We write (A$; B$)/(A; B) iff A$/A and B$/B. Then the inclusion
(A$; B$)/(A; B) is called strict, if at least one of the inclusions A$/A and
B$/B is strict.

For a function f # C(Q) and a pair (A; B) # M set

EA( f; PB, 0) := inf
p # PB, 0

sup
t # A

| f (t)& p(t)|.

Clearly, for A=B=Q,

EQ( f; PQ, 0)=EQ( f; P0)=E( f ).

It is easily seen that the inclusion (A$; B$)/(A; B) implies the inequality

EA$( f; PB$, 0)�EA( f; PB, 0),

which leads, in particular, to

EA( f; PB, 0)�E( f )

for any pair (A; B) # M.

Definition 2.2. A polynomial q # PB, 0 , satisfying the equality

sup
t # A

| f (t)&q(t)|=EA( f; PB, 0),

is called a best restricted ranges approximation to f on A from PB, 0 .

A best restricted ranges approximation to f on Q from P0 , or the
polynomial p* # P0 satisfying

& f& p*&=E( f )

is called for short a best approximation to f from P0 .
The compactness argument justifies the validity of the following

Theorem 2.1. If A and B are compact subsets of Q (A{<), then for
every function f # C(Q) there exists a best restricted ranges approximation to
f on A from PB, 0 .

Corollary 2.1. For every function f # C(Q) there exists a best approxi-
mation to f from P0 .

Next, let us formulate in the complex form the following three classical
results.
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Theorem 2.2 (On Linear Inequalities [7]). Let U be a compact subset
of Cn. Then there exists a point z # Cn such that Re(z, u)>0 for all u # U iff
the origin of Cn does not belong to the convex hull of U.

Here ( , ) means the scalar product in Cn.

Theorem 2.3 (Carathe� odory [7]). Let A be a subset of an n-dimen-
sional complex space. Every point of the convex hull of A is expressible in the
form of a convex linear combination of 2n+1 (or fewer) elements of A.

Theorem 2.4 (Helly [12]). Let [V] be a collection of closed and convex
sets V in Cn such that every 2n+1 among them have a common point. Then
all the sets V have a common point, provided that there exists a finite sub-
collection V1 , V2 , ..., Vs(s�1) of elements of [V], such that their intersection
V1 & V2 & } } } & Vs is non-void and bounded.

Throughout this article |A| denotes the cardinality of a set A.

3. MINIMAL ADMISSIBLE PAIRS OF SETS AND
THEIR PROPERTIES

Let f # C(Q).

Definition 3.1. An ordered pair (A; B) # M is called an admissible pair
(a.p.) for a function f with respect to P0 , if

EA( f ; PB, 0)=E( f ).

Definition 3.2. An admissible pair (A0 ; B0) for f with respect to P0 is
called a minimal admissible pair (m.a.p.) for a function f with respect to P0 ,
if the strict inclusion (A; B)/(A0 ; B0) implies the strict inequality

EA( f; PB, 0)<EA0
( f; PB0 , 0). (3.1)

Remark 3.1. Each a.p. (A; B) for a function f, where A and B are finite
subsets of Q, admits at least one m.a.p. for f.

Theorem 3.1. Let (A0 ; B0) # M be a m.a.p. for f # C(Q) with respect to
P0 , and p* # P0 be a best approximation to f from P0 . Then simultaneously
the following inclusions hold :

A0 /M( f &p*), B0 /B( p*). (3.2)
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Proof. By contradiction:

(a) Assume that the first inclusion of (3.2) does not hold. Then, there
exists a point t0 # A0 , a polynomial p~ # PB0 , 0 , a positive constants $1 , $2

(see Definition 3.2) such that

| f (t0)& p*(t0)|=E( f )&$1 , (3.3)

sup
t # A0 "[t0 ]

| f (t)& p~ (t)|=E( f )&$2 . (3.4)

For an arbitrary * # (0, 1) consider a polynomial p* of the form

p* :=(1&*) p*+*p~ .

Taking into account convexity of the set PB0 , 0 and the inclusions p~ # PB0
,

0 , p* # P0 /PB0 , 0 we get

p* # PB0 , 0 for any * # (0, 1).

Using (3.3), we get

| f (t0)& p* |<E( f )& 1
2 $1 (3.5)

for small enough parameters * # (0, 1). For each point t # A0 "[t0] and an
arbitrary * # (0, 1), using (3.4), we have

f (t)& p*(t0)|<E( f )& 1
2 $1 (3.6)

(note that in (3.6) we write t, but not t0). Employing the inequalities (3.5)
and (3.6), we derive for small enough * # (0, 1) the estimation

EA0
( f ; PB0 , 0)� sup

t # A0

| f (t)& p*(t)|<E( f ),

which is impossible, since (A0 ; B0) is a m.a.p. for f. Hence A0 /M( f &p*).

(b) Assume now that the inclusion B0 /B( p*) does not hold true.
Then, there exists a point t0 # B( p*), for which

p*(t0) # int 0t0
,

that is,

| p*(t0)&u(t)|<r(t0).

In view of Definition 3.2 one can find a polynomial q~ # PB0"[t0 ], 0 , such that

sup
t # A0

| f (t)&q~ (t)|<E( f ).
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Repeating the technique of the part (a), we can show that for a small
enough parameter * # (0, 1) the polynomial

q* :=(1&*) p*+*q~ # PB0 , 0 ;

in addition

sup
t # A0

| f (t)&q*(t)|<E( f ),

which is impossible for the m.a.p. (A0 , B0). Hence, B0 /B( p*), as was to
be proved. K

Theorem 3.2. For each function f # C(Q) there exists at least one m.a.p.
(A0 ; B0) for f with respect to P0 , such that

|A0 _ B0 |�2n+1.

Proof. Taking into account Remark 3.1, it is enough to show that for
some set D0 /Q with |D0 |�2n+1 the pair (D0 , D0) is an a.p. for f. Carry
out the proof in a few steps.

(a) The subsets D=[t1 , t2 , ..., t2n+1] of Q with 2n+1 points (with
possible repetitions) can be interpreted as points t=(t1 , t2 , ..., t2n+1) in the
product space Q2n+1. Introduce an auxiliary function 8 : Q2n+1 � R by
setting for each point t=(t1 , t2 , ..., t2n+1) # Q2n+1,

8(t)=ED( f ; PD, 0),

where D=[t1 , t2 , ..., t2n+1]/Q. It is easily seen that for each point
t # Q2n+1 the conditional inequality holds true:

8(t)�E( f ). (3.7)

(b) Let us prove that the function 8 is continuous from above on
Q2n+1. Fix an arbitrary point t$=(t$1 , t$2 , ..., t$2n+1) # Q2n+1 (simultaneously
setting D$=[t$1 , t$2 , ..., t$2n+1]) and an arbitrary number =>0. According to
Theorem 2.1 there exists a polynomial p$ # PD$, 0 such that

| f (t$k)& p$(t$k)|�8(t$), k=1, ..., 2n+1.
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Define p" :=(1&*) p$+*p0 , where p0 is a polynomial from Hypothesis 2.1.
It is understood that for some small enough * # (0, 1) we have

| f (t$k)& p"(t$k)|<8(t$)+= (3.8)

|u(t$k)& p"(t$k)|<r(t$k) (3.9)

k=1, ..., 2n+1.

In view of the inequalities (3.8) and (3.9) and continuity on Q of the
functions f, p", u, r, for each k=1, ..., 2n+1 there exists a neighborhood Ok

of the point t$k such that for all tk # Ok the following inequalities hold:

| f (tk)& p"(tk)|<8(t$)+=, |u(tk)& p"(tk)|<r(tk). (3.10)

Taking an arbitrary point t=(t1 , t2 , ..., t2n+1) # O1_O2_ } } } _O2n+1 , the
corresponding set D=[t1 , t2 , ..., t2n+1], we come to the conclusion that
the polynomial p" belongs to the set PD, 0 and the following inequality
holds:

8(t)=ED( f ; PD, 0)� max
1�k�2n+1

| f (tk)& p"(tk)|<8(t$)+=.

Therefore the function 8 is continuous from above at an arbitrary point
t$ # Q2n+1, or everywhere on Q2n+1.

(c) By Weierstrass' theorem there always exists such a point t0 #
Q2n+1 with the corresponding set D0 /Q that

ED0
( f; PD0 , 0)=8(t0)= max

t # Q2n+1
8(t)=: E0 (3.11)

Note that |D0 |�2n+1. Moreover, it follows from Theorem 2.1 that for each
set D=[t1 , t2 , ..., t2n+1]/Q and the corresponding point t=(t1 , t2 , ..., t2n+1)
# Q2n+1 there exists a polynomial p # PD, 0 such that the following inequalities
hold:

| f (tk)& p(tk)|�8(t)�8(t0)=E0 . (3.12)

(d) We prove, using Helly's theorem, that the pair (D0 , D0) is an a.p.
for f. Indeed, introduce for each point t # Q the set

Vt :=[ p # P | | f (t)& p(t)|�E0 and p(t) # 0t].

291GENERALIZED POLYNOMIALS



Notice that each set Vt is convex and closed. In addition, by virtue of
(3.12), arbitrary 2n+1 sets Vt have a common point. Next, linear inde-
pendence of the system [,1 , ,2 , ..., ,n] entails that there is a set of points
[t̂1 , t̂2 , ..., t̂n]/Q such that det[, l ( t̂j )]n

i, j=1 {0. For each p # P define

41( p) := max
1�l�n

| p( t̂l )|.

It is easy to show that 41( } ) is a norm on P. Since all norms on P are
equivalent, for some +>0 and for each p # P we have

&p&�+41( p). (3.13)

Now for each polynomial p # �n
l=1 V t̂l

in view of (3.13) we have the follow-
ing estimation

&p&�+41( p)=+ max
1�l�n

| p(t̂l )|�+( max
1�l�n

| p(t̂l )& f (t̂ l )|+ max
1�l�n

| f (t̂l )|

�+(E0+& f &).

Hence, the set �n
l=1 V t̂l

is bounded. The isomorphism between P and Cn,
by Helly's theorem, entails that all the sets Vt have a common point.

Let p~ 0 # �t # Q Vt . Then for all t # Q the following inclusion holds:
p~ 0(t) # 0t ; in addition

| f (t)& p~ 0(t)|�E0 .

Thus, p~ 0 # P0 , which leads (taking into account (3.7)) to

E( f )�& f& p~ 0&�E0=8(t0)�E( f ).

Finally,

E( f )=E0=ED0
( f; PD0 , 0).

This completes the proof. K

Definition 3.3. We call a function f # C(Q) admissible, if it satisfies at
least either of the two conditions

(1) f (t) # 0t for all t # Q;

(2) M( f &p*) & B( p*)=<,

where p* # P0 is some best approximation to f from P0 .
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We denote the set of all admissible functions by Ca(Q).

Theorem 3.3. Let P be a Haar space and f # Ca(Q)"P0 . Then each
m.a.p. (A0 ; B0) for the function f with respect to P0 satisfies the condition

|A0 _ B0 |�n+1.

Proof. First of all notice that for every set consisting of n distinct points
[t1 , t2 , ..., tn]/Q and an arbitrary set of numbers [c1 , c2 , ..., cn]/C there
exists in the Haar space P a polynomial p satisfying (see [6], p. 68)

p(tk)=ck , k=1, ..., n.

We continue by contradiction. Assume that for some m.a.p. (A0 , B0) for f
the conditional inequality holds |A0 _ B0 |�n. Now consider in accordance
with Definition 3.3 two cases:

(a) Let f (t) # 0t for each t # Q. Set

C0 :=A0 _ B0=[t1 , ..., tk], k�n.

We complete if needed the set C0 up to a set of n points and consider a
polynomial p~ # P satisfying

p~ (tl)= f (tl), l=1, ..., k.

Then, obviously p~ # PC0 , 0 /PB0 , 0 and so

EA0
( f; PB0 , 0)�EC0

( f; PC0 , 0)� max
1�l�k

| f (tl)& p~ (tl)|=0<E( f ),

since f � P0 , which contradicts the definition of a m.a.p.

(b) Assume that for some best approximation p* # P0 to the function
f we have the condition M( f &p*) & B( p*)=<. Due to Theorem 3.1 the
following inclusions hold: A0 /M( f &p*), B0 /B( p*). Therefore A0 & B0

=<. Let A0=[t1 , ..., ts], B0=[ts+1 , ..., tk], k�n. Choose such a polyno-
mial p~ in P that

p~ (tl)= f (tl), l=1, ..., s,

p~ (tl)= p*(tl), l=s+1, ..., k.

Due to the obvious inclusion p~ # PB0 , 0 we have the estimation

EA0
( f; PB0 , 0)�max

t # A0

| f (t)& p~ (t)|=0<E( f )

since f � P0 , which is impossible for a m.a.p. This completes the proof. K
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4. CHARACTERIZATION OF BEST APPROXIMATION

Let f # C(Q), p* # P0 . Set

_1(t) :=f (t)& p*(t), t # M( f &p*),

_2(t) :=u(t)& p*(t), t # B( p*).

Theorem 4.1 (Kolmogorov-Type Characterization). A polynomial
p* # P0 is a best approximation to a function f # C(Q) from P0 , if and only
if for each p # P the following conditional inequality holds true:

min[ min
t # M( f &p*)

Re( p(t) _1(t)), min
t # B( p*)

Re( p(t) _2(t))]�0. (4.14)

Proof. O In the case of f belonging to P0 we have _1(t)= f (t)& p*(t)
=0 for all t # Q, and so (4.14) is true. Let f # C(Q)"P0 . We proceed by
contradiction. Assume that for some polynomial q # P0 the condition (4.14)
does not hold, that is, we have the inequalities

Re(q(t) _1(t))>0, t # M( f &p*),
(4.15)

Re(q(t) _2(t))>0, t # B( p*)

By virtue of Theorem 3.2 there exists such a m.a.p. (A0 ; B0) for f that
|A0 _ B0 |�2n+1. Moreover, in view of Theorem 3.1 we have the inclusions

A0 /M( f &p*), B0 /B( p*),

leading along with the inequalities (4.15) to

Re(q(t) _1(t))>0, t # A0 ,
(4.16)

Re(q(t) _2(t))>0, t # B0 .

Taking into account that both A0 and B0 are finite sets, we introduce the
constant *0 ,

*0 :=min {min
t # A0

2 Re(q(t) _1(t))
|q(t)| 2 , min

t # B0

2 Re(q(t) _2(t))
|q(t)|2 = .

Notice that in view of (4.16), *0>0. Now for a fixed * # (0, *0) and an
arbitrary point t # B0 we have

|u(t)& p*(t)&*q(t)|2=|u(t)& p*(t)|2&2* Re(q(t) _2(t))+*2 |q(t)|2

=r2(t)+* |q(t)|2 \*&
2 Re(q(t) _2(t))

|q(t)|2 +<r2(t).
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Therefore p*+*q # PB0 , 0 . We can show in an analogous way that for each
point t # A0 and the same * # (0, *0) the following inequalities hold:

| f (t)& p*(t)&*q(t)|2<| f (t)& p*(t)| 2=& f& p*&2=E 2( f ).

Finally, we get

EA0
( f; PB0 , 0)�max

t # A0

| f (t)& p*(t)&*q(t)|<E( f ),

which is impossible for the m.a.p. (A0 , B0). The obtained contradiction
proves the `if ' part of the theorem.

o Suppose for every polynomial p # P the condition (4.14) holds.
Fix an arbitrary polynomial q # P0 and for an arbitrary * # (0, 1) set q* :=
(1&*)q+*p0 , where p0 is the polynomial of Hypothesis 2.1. Then, clearly,
for all points t # Q (in particular, for t # B( p*)) we have the inclusion
q* # int 0t , hence the absolute inequalities

|u(t)&q*(t)|<r(t)=|u(t)& p*(t)|, t # B( p*), * # (0, 1),

hold, leading, after simple transformations, to

Re((q*(t)& p*(t)) _2(t))>0

for all t # B( p*) and * # (0, 1). But then due to (4.14) for the polynomial
q*& p* there exists such a point t* # M( f &p*) that

Re((q*(t*)& p*(t*)) _1(t*))�0.

Hence continuing, we derive the following chain of inequalities

& f& p*&2=| f (t*)& p*(t*)| 2=Re( f (t*)& p*(t*)) _1(t*))

�Re( f (t*)&q*(t*)) _1(t*))

�| f (t*)&q*(t*)| } | f (t*)& p*(t*)|�& f&q*& } & f &p*&.

Thus, for each * # (0, 1) we have

& f& p*&�& f&q*&.

By passing to the limit in the last inequality as * � +0, we obtain the
inequality

& f& p*&�& f&q& for all q # P0 .
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Therefore p* is a best approximation to f from P0 , which was to be
proved. K

For each function f # C(Q) and p* # P0 consider the set

B=[b(t)=(.1(t), .2(t), ..., .n(t)) _1(t) | t # M( f &p*)]

_ [c(t)=(.1(t), .2(t), ..., .n(t)) _2(t) | t # B( p*)],

noticing that due to compactness of the sets M( f &p*) and B( p*) in Q the
set B is compact in Cn.

Theorem 4.2 (``Zero in the Convex Hull'' Characterization). A polyno-
mial p* # P0 is a best approximation to a function f # C(Q)"P0 if and only
if the origin of the space Cn belongs to the convex hull of B.

Proof. Consider an arbitrary polynomial p # P in the form p=�n
&=1 c&,&

and the corresponding vector z=(c1 , c2 , ..., cn) # Cn. Let p* # P0 is a best
approximation to f # C(Q)"P0 . In view of Theorem 4.1 it is equivalent to
the fact that for each polynomial p # P at least either of the inequalities

Re( p(t) _1(t))>0, t # M( f &p*)

Re( p(t) _2(t))>0, t # B( p*)

does not hold true, which means that the system of inequalities

Re(z, b(t))>0, t # M( f &p*)

Re(z, c(t))>0, t # B( p*)

is incompatible. Due to compactness of the set B in view of Theorem 2.2
this can happen if and only if the origin of the space Cn belongs to the
convex hull of B. K

Theorem 4.3. A polynomial p* # P0 is a best approximation to f #
C(Q)"P0 from P0 if and only if there exist such sets A0=[t1 , t2 , ..., tk]/
M( f &p*), B0=[t$1 , t$2 , ..., t$m]/B( p*) (k�1, k+m�2n+1) and positive
constants *1 , ..., *k , *$1 , ..., *$m , that for each polynomial p # P the following
condition holds:

:
k

l=1

*l p(tl) _1(tl)+ :
m

s=1

*$s p(t$s) _2(t$s)=0. (4.17)
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Proof. O Let p* be a best approximation to f from P0 . According to
Theorem 4.2, the origin of the space Cn belongs to a convex hull of B. In
view of Carathe� odory's theorem one can find such k vectors b(tl) # B,
tl # M( f &p*), (l=1, ..., k), m vectors c(t$s) # B, t$s # B( p*), (s=1, ..., m)
and positive numbers *l (l=1, ..., k), *$s (s=1, ..., m) that

:
k

l=1

*l+ :
m

s=1

*$s=1,

:
k

l=1

*lb(tl)+ :
m

s=1

*$s c(t$s)=0, (4.18)

k+m�2n+1.

We multiply the second of the equalities (4.18) by an arbitrary vector
t=(c1 , ..., cn) # Cn and set p=�n

&=1 c&.& , to obtain (4.17). Let us show
that k�1. Indeed, notice, that for the polynomial p0 from Hypothesis 2.1
the following condition holds:

Re( p0(t$s)& p*(t$s)) _2(t$s))>0, s=1, ..., m.

Then

:
m

s=1

*$s Re(( p0(t$s)& p*(t$s)) _2(t$s))>0,

or

:
m

s=1

*$s( p0(t$s)& p*(t$s)) _2(t$s){0.

o Assume that for some collections [t1 , ..., tk]/M( f &p*), [t$1 , ..., t$m]
/B( p*), and positive constants *l (l=1, ..., k), *$s (s=1, ..., m) and arbitrary
p # P (4.17) holds. This immediately entails the equality

:
s

l=1

Re( p(tl) _1(tl))+ :
m

s+1

*$s Re( p(t$s) _2(t$s))=0.

Thus, at least either of the numbers

Re( p(tl) _1(tl)) (l=1, ..., k) and Re( p(t$s) _2(t$s)) (s=1, ..., m)
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is non-positive. But then, obviously, the condition (4.14) holds and p* by
Theorem 4.1 is a best approximation to f from P0 . This completes the
proof. K

Remark 4.1. Under the conditions of Theorem 4.3,

|A0 _ B0 |�2n+1&|A0 & B0 |.

Remark 4.2. If P is a Haar space and f # Ca(Q)"P0 , the sets A0 and B0

in Theorem 4.3 in addition satisfy the condition |A0 _ B0 |�n+1.

Indeed, it is easy to show that for the sets A0 , B0 in Theorem 4.3 the
ordered pair (A0 ; B0) is an a.p. of finite sets. Which, in view of Remark 3.1,
contains at least one m.a.p. (A$0 ; B$0) for f. Taking into account
Theorem 3.3, we get

|A0 _ B0 |�|A$0 _ B$0 |�n+1.

Remark 4.3. All the results of this paper remain valid for some
weakened system of restrictions 0, which can be defined as follows. Let X
be some open subset of Q; then

0t :={[z # C | |z&u(t)|�r(t), t # Q"X]
C, t # X.

Moreover, the functions u and r are continuous on Q"X. In addition, the
function r is positive on Q"X.

Then, by letting X=Q (i.e., there are no restrictions), we obtain as a
consequences classical theorems of characterization of best approximation
for unrestricted approximation. Let us formulate them.

Theorem 4.4 [8]. A polynomial p* # P is a best approximation to a
function f # C(Q) if and only if for each p # P the following conditional
inequality holds true;

min
t # M( f &p*)

Re( p(t) _1(t))�0.

Theorem 4.5 [9�11]. A polynomial p* # R is a best approximation to
f # C(Q)"P form P if and only if there exist such sets A0=[t1 , ..., tk]/
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M( f &p*) (1�k�2n+1) and positive constants *1 , ..., *k that for each
polynomial p # P the following condition holds:

:
k

l=1

*l p(tl) _1(tl)=0.

5. UNIQUENESS AND STRONG UNIQUENESS OF
BEST APPROXIMATION

We assume throughout this section that P is a Haar space.

Theorem 5.1 (Uniqueness Theorem). Each function f # Ca(Q) has a
unique best approximation in P0 .

Proof. If f # P0 , the statement of the theorem is obvious. Let f #
Ca(Q)"P0 . Assume, that f has in P0 two best approximations p1 and p2 .
Then, as it is known, the polynomial p*=1�2( p1+ p2) # P0 is also a best
approximation for f. Using standard techniques, we get the inclusions

M( f&p*)/M( f&p1) & M( f&p2)/Z( p1&p2),
(5.19)

B( p*)/B( p1) & B( p2)/Z( p1&p2).

Consider now an arbitrary m.a.p. (A0 ; B0) for the function f. By virtue
of Theorems 3.1 and 3.3 we have

A0 /M( f &p*), B0 /B( p*) (5.20)

and also

|A0 _ B0 |�n+1. (5.21)

The inclusions (5.19) and (5.20) along with the inequality (5.21) entail the
estimation

|Z( p1& p2)|�|M( f &p*) _ B( p*)|�|A0 _ B0 |�n+1,

which, in view of Definition 2.1, gives p1= p2 . This completes the proof. K

Let us show that for the functions f # C(Q)"Ca(Q) Theorem 5.1, in
general, is incorrect.
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Example. Let Q=[0, 1], u(t)=0, r(t)=1�2, ,1(t)=1, ,2(t)=t,
f (t)=1�2+3�2t, t # [0, 1]. Note, that for each p # P0 for t=1,

|Re p(1)|�| p(1)|=| p(1)&u(1)|�r(1)=1�2.

Using this, we have

E( f )= inf
p # P0

max
t # [0, 1]

| f (t)& p(t)|� inf
p # P0

| f (1)&Re p(1)|�3�2.

While for the functions p1=,1 # P0 , p2=1�2,2 # P0 we have

& f& p1&=& f& p2 &=3�2.

Hence, E( f )=3�2 and f has in P0 two best approximations p1 and p2

(besides, p1 { p2).

Theorem 5.2. (Strong Uniqueness Theorem). Let p* # P0 be a best
approximation to a function f # Ca(Q) from P0 . Then there exists such a
constant #=#( f )>0 that any polynomial p # P0 satisfies the inequality

& f& p&2�& f& p*&2+# &p*& p&2. (5.22)

Proof. If f # P0 , then the inequality (5.22) is trivial for #�1. Let
f # Ca(Q)"P0 . Then due to Theorem 4.3 and Remark 4.2 there exist such
sets A0=[t1 , ..., tk]/M( f &p*), B0=[t$1 , ..., t$m]/B( p*)( |A0 _ B0 |�
n+1) and positive constants *l (l=1, ..., k), *$s (s=1, ..., m) that for each
polynomial p # P (4.17) holds. Without loss of generality, we shall assume
that

:
k

l=1

*l=1. (5.23)

For each p # P set

42( p) :=\ :
k

l=1

*l |( p(tl)| 2+ :
m

s=1

*s | p(t$s)| 2+
1�2

.

It is easy to check that 42( } ) is a norm on P. Hence, there exists such a
constant #>0 that for all p # P the following inequality holds:

42
2( p)�#(&p&2). (5.24)
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Taking into account (4.17), (5.23) and (5.24), we get

& f& p&2� :
k

l=1

*l | f (tl)& p(tl)| 2+ :
m

s=1

*$s |u(t$s)& p(t$s)| 2& :
m

s=1

*$s r2(t$s)

= :
k

l=1

*l | f (tl)& p*(tl)| 2+2 :
k

l+1

*l Re(( p*(tl)& p(tl) _1(tl))

+ :
k

l=1

*l | p*(tl)& p(tl)| 2+ :
m

s=1

*$s |u(t$s)& p*(t$s)|2

+2 :
m

s=1

*$s Re(( p*(t$s)& p(t$s)) _2(t$s))+ :
m

s=1

*$s | p*(t$s)& p(t$s)| 2

& :
m

s=1

*$s |u(t$s)& p*(t$s)| 2=& f& p&2+42
2( p*& p)

�& f& p*&2+# &p*& p&2. K

Define on the set Ca(Q) the operator of best approximation {, which
assigns to each function f # Ca(Q) its unique best approximation in P0 .

Theorem 5.3. The operator { is continuous in Ca(Q).

Proof. Fix an arbitrary function f0 # Ca(Q) and the corresponding
constant of strong uniqueness #=#( f0) in (5.22). Let us show now that for
some #1>0 and all such f # Ca(Q) that & f& f0&�1 the inequality

&{( f )&{( f0)&�#1 & f& f0&1�2,

holds, which immediately implies the Lipschitz continuity (with the index
1�2) of the operator { at the point f0 . Taking into account (5.22), we get

&{( f )&{( f0)&�#&1�2(& f0&{( f )&2&& f0&{( f0)&2)1�2

�#&1�2(& f0& f &+& f&{( f )&2&& f0&{( f0)&2)1�2

�#&1�2((& f0& f &+& f&{( f )&)2&& f0&{( f0)&2)1�2

�#&1�2((2 & f0& f &+& f0&{( f0)&)2&& f0&{( f0)&2)1�2

=#&1�2(4 & f0& f & (& f0& f &+& f0&{( f0)&))1�2

�#1 & f0& f &1�2,

where #1=2#&1�2(1+E( f0))1�2. K
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Remark 5.1. Theorem 5.2 suggests the standard form of the inequality
of strong uniqueness (see [13]) in the complex case. Indeed, set #1=1�4#,
$=2#&1�2. Then for all such p # P0 that & p& p*&�$ we have the follow-
ing inequality

& f& p&�& f& p*&+#1 &p& p*&2.

6. CONCLUDING REMARKS

1. Helly's theorem in the problems of best approximation has been
applied by Shnirelman [14], Rademacher and Schoenberg [12] and others.

2. All the statements of this paper (except Theorem 3.3, Remark 4.2
and the theorems of Section 5) are also valid for the case of Q being a
compact Hausdorff space. But the existence on the compact Q a Haar
space brings very serious conditions on Q (for the real-valued case see
Mairhuber [15] and the complex-valued one��Schoenberg and Yang [16]
and Overdeck [17]).
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